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ssa - NASA's Exploration Roadmap
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NS NASA Mission Types

1. Grandfather Clocks
 Large, complex, awe-inspiring, handmade, expensive
* Similar to traditional manned space missions

2. Swiss Clocks

» Smaller, elabol ate, intricate, & exceptionally well
engineered .

e Similar to traéhtlonal ganned robotic science missions
3. Quartz Watches \ N

« Many, reliable, robtlst mechanical function

« Majority of the capabllltl 3 are ir '

+ Small Sats are desired to b‘ﬁ |




NASA Effective SmallSats

« Small Sats support “Efficient & Effective Science” by
enabling a rapid set of Missions via.:

« Common spacecraft bus and hardware interfaces
for rapid manufacturing and checkout

 Common avienics to allow standard instrument
and component iategration
« Many current Sma at efforts are focused upon the
hardware and comppq ISSUes
 Lightweight comp'_o'r"-f.- \

e I ‘h.

- Fast processors, etc. = %




ssa - Effective SmallSats (SmartSats)

 Need to utilize Common On-board and Mission Ops
“Intelligent Software” to enable “SmartSats”

. Functlon robustly in dynamic and uncertain

e Support opp tunistic and goal-directed science
data acquisition

e Support reduced TS loperations requirements



NASA Current Mission Ops

e ~10 people for each spacecraft

* No or limited on-board capability for
systemumonitoring, diagnosis or recovery

. Operatlona cemmands must be sent from
mission 0ps

* No goal-directed'®
the GDS system

ra '_ ns on board or In

-\.-"-.



NaSA SmartSats Target

e 1 person for ~10 spacecraft (extreme case)

e Enable onboard planning, and execution
(ala. Deep Space 1) to achieve mission/science
goals .

.
« Enable onboard

l monitoring, diagnosis and
recovery (ala-EO-B)to ensure robust operation

 Enable smart'“adw ad support automation
for flight controllers t9 manage multiple
systems (or missions) ’“‘



sasa Autonomy & Mission Operations

 Rapid Integration and deployment of
robust mission software for new missions

 Data-driven architectures to enable
softwarescode to be largely stable.

. Advance_q,,e"' ation and validation of

the software that does change.

e Coupled to S|mu atigl j\ he-loop and

'll‘

hardware-in- the | e, p AN



w4 Autonomy & Mission Operations

e NASA Goal

~« Extend technologies and systems to enable
smart'small satellites with intelligent
operations




sasa - SmartSat Exploration Challenges

Spacecraft autonomy
* Need: effective, reliable, goal-based operations of unmanned spacecraft
« State of art: requires direct human command and monitoring
Spacecraft state management |

« Need: effee ive, on-board management of unmanned spacecraft system
health . |

.

o State of art: requwes o e t monitoring, limited “safing” and on-board
diagnostics N

Lightweight mission opere !
* Need: flexible, sustalnable anc _,_-“’ [Ssout” mission operations paradigms
« State of art ; large numbers Qf ; ohtiellers and staff

I’]Sﬂ

IS difficult and often

5 \"1'." 1\ % ;
Automation of existing spacec'raft and ¢ \
impractical. Best to start from the begmﬂm



Autonomous Software,
Algorithms &
Data Management




N, Intelligent Automation

A B
P &

Nomenclature: Automation versus Autonomy
* Autonomy refers to placement of control:

e Spacecraft autonomy specifies on-board autonomous
control of spacecraft

. Space belng able to operate with less interaction
with groun

. Automation refers tc
and operations

e Simple control Iagps «. m Ies of automation

e Automation is also USE :h ' software to reduce human
Involvement (deC|S|on s

| of human involvement in control



NASA Intelligent Automation

Technology:

* Flexible and adaptable software supporting automation
and autonomy

e Providing adjustable levels of human involvement

'\-q_‘_\___ '

o Key elements ol echnology
 Data-driven general and re-usable modules
« Common data specifieation

* Monitoring, analysiSyxdiaghesis of telemetry and system
states . \-.~

« Decision-making: Fr@m Q\

ers to on-board
decision-making

« Execution: Carry out deCISIO
and automation .. s N
e Human interaction support ad" u5ta > automation,
abstraction 5 I\

L

lans, from humans
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NASA Technical Challenges

Human in loop

« Traditional automation and autonomy software leave human out
* Need software capable of working for or with human users

Adjustability

« Circumsta nces drive need for more or less human involvement
* Need software with automation levels adjustable online

 Same core capabilitieés,used on ground and in flight

Trust =

* Reluctance to accept flexible sC

* Need trust-building process's ~
Reality bk
 Technology must handle the re

* Need to develop softwarenagalnst rqa v
Insertion path RS e G

'\T'

e Switching from manual to new automation is di fficL ‘*“’ costly
« Need software supporting gradually increasing automs %

%
l.\

are
fification techniques



xsa - Remote Agent Experiment

Remote Agent Experiment
May 17-21, 1999
65 Million miles from Earth
During Cruise Phase

Remote Aent on DS1 wins NASA's 1999 Software of the Year

Planner/
Scheduler

‘ : . FJJngr "
Pleininlirle) E40arts =205 : WA

Uoel Newieziiog Mariitors




w3 ALDER Technology Project

Autonomous Lander Demonstrator (ALDER)

 Technology Concept funded under Exploration
Technolog_y Development Program.

(NOT A MISSION CONCEPT)

b,
.i_‘.

« The goal of ALDER _vvas toidemonstrate Autonomy
Technologies in.spacecraft bysin Iementing;

e Autonomous operation of posi O phases (lunar
injection, cruise phase, lunar | \._: and mobile
surface ops). - :

1:‘ :

. System health management for spa \CECr: \ te
« Adaptive control N

» Vision and Image processing for posm@n
estimation




NASA Mission Outline

Concept Mission Duration for 10-14 Days

Controlled soft landing near equator on Earth S|de landing
In sunlight.

Perform scientifieimeasurements at landing site.

« Number of possibleigoals, Including rock/soil samples,
spectrometers, ground'penetrating radar, magnetometer
measurements, seismometer, etc.

M last

e U
i et 3
e ‘? e
b- -i-.L . ';N'..;I."-
SR et

“Hop” to next location, roughI
landing site.

 Take off from surface
e Lateral Transfer
e Land

X LK m R

Repeat scientific measurements, hop = =
to the next site. e,




Hop Mission Leg Profile
Receive ““HopTo” Cmd

<£§§\Receive “LandAt” Cmd

R 8. Hover To
'gq’a_ Landing
6. Retro-Burn | ’ Coordinates

5. Coast/Orient for Retro-Burn

4. Perform Ballistic Burn

7. Hover 30m AGL ~= (
3. Orient for Ballistic Burn (Wait for Landing /%

2. Pre-Burn Coordinates)

Liftoff

'3, (Lunar Axis Reference Frame)

54 ~1km Distance
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. HyDE: Integrated

. SHINE: Reflexwe

. IDEA: Reasonlng
. Vision Workbench:

. Reflection

. EUROPA: Planning

and Execution

SHINE

System Health
Management (ISHM)

ISHM

Vision Processing ™~
and Stereo Image
Correlation

Visualization
5 -
Engine

HAL
(ME/ACS Thrustars)
JPL Terrain sim, VIWB  ©
{Cameras)

Architecture:
Guidance, Control
and Simulation

Autonomy Technologies

HyDE L¢
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Diagnostic Manager [ Plannar Timalna

ISHM Timeline
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E ISHM)

‘ N
Reflection
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Structures
Science
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Simulation Environment
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xsa |ntelligent Onboard Control

IDEA: Intelligent
Deployable Execution
Architecture

e Scaled for On-board

Operations

e Coordinates
execution of complexu.,.
tasks . s

« Generic real-time - S
coordination and :
Inter-agent
communications

» Application-specific,
model-based
definition of
operational rules for
nominal and off-
nominal scenarios

- Goal Register
N
N\
N

_—
Plan Service
Layer

Atacama



sasa Integrated Systems Health Management

The Livingstone 2 (L2) model-based diagnosis continuously

monitors the health of the spacecraft camera and processor
subsystems

Advanced diagnostic module executed
 Deployed on EO-1 in June - Sept 2004
15 successful die gnostic tests via data link

o L2 successfully detected and isolated All of these
simulated failures

- Still Operational, and

Clear application to Small
vehicles : ,.k |

! tioning on EO-1
CLV, and other new

) Iy

"This software grants us the ablllty to
troubleshoot the robotic systems requr%ed
handle increasingly complex tasks of exalo,r | X
while they are millions of miles and perhaps li
years away from Earth."




s Vision-based 3D Localization

Scope:

3D Navigation & Placement Issues:

3D visual navigation and estimation

* Robust, accurate visual tracking of target
features

« Safe traverse o\
floaters) with loca

» Target handoff betwee

* Instrument placement locatio
assessment

 Safe instrument mo'uom&lP
and final placement

distances (hoppers,
le avoidance

Existing Capability: 'fRL
Software/HW system TN

Mission Relevance:



w“"*“ Robust Autonomy Software for Missions

Certification and validation of Autonomy software

Modebased Systel
Certification

. ¥

V&YV for Search
Engine

V&V for Models

v v ! v

Consistency/Correctnes Data Resource
CompletenessChecking ¢ CodingErro Systenrfevel Manipulation Timing
Checking | | Flight Ruldg Errors Analysis Analysis

\- N Jk

Eliminate Domain Model Errors Y

Eliminate Coding Errors Eliminate Performance Er




sasa Evolved Antenna in ST5 Mission

Mission Infusion

Space Technology 5 Mission: T
e New Millennium Program >
e Sun-Earth Connection .ﬂ _

» Three nanosats, launch in CY2005
» Measure effect of solaraetivity on
Earth's magnetosphere

-

=

ARC’s Technology: » «
* ARC'’s software automatically deSignedi$

ST5 antenna to meet mission =~ =&
requirements o A __

« Algorithm uses simulated Darwmlan e (olved X-Band ST5
evolution e _ \ tennas

« Within 4 weeks, ARC can rédesign and 10wn and validated
deliver a new evolved prototype B L N\
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